CM= EM = \[\mathrm{\frac{a}{2}}\]√5 = \[\frac{4}{2}\]√5 = 2√5 CE = a√3 = 4√3 MN = a√2 = 4√2 Karena MN dan CE berpotongan tegak lurus dan sama besar di titik Q, maka MQ = \[\frac{1}{2}\]×MN = 2√2 Perhatikan segitiga CEM, ∠M adalah sudut tumpul karena CE2 > CM2 + EM2, sehingga jarak titik E ke CM adalah jarak dari titik E ke
Diketahuititik A(5, 6), B(4, -2), dan C(2, 2). Tentukan: a. vektor BC dan AC. b. proyeksi vektor ortogonal vektor AC pada vektor BC. Jawab: Kita bisa lakukan perhitungan seperti berikut:-----#-----
Ax,y dirotasi dengan sudut 90° anggap berpusat di 0,0 menjadi A'-y,xA5,0 dirotasi dengan sudut 90° anggap berpusat di 0,0 menjadi A'0,5
. 231 310 370 165 414 159 193 119